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Abstract. E-voting systems are a powerful technology for improving
democracy by reducing election cost, increasing voter participation, and
even allowing voters to directly verify the entire election procedure. Un-
fortunately, prior internet voting systems have single points of failure,
which may result in the compromise of availability, voter secrecy, or in-
tegrity of the election results.
In this thesis, we consider increasing the fault-tolerance of voting systems
by introducing distributed components. This is non-trivial as, besides
integrity and availability, voting requires safeguarding confidentiality as
well, against a malicious adversary. We focus on the vote collection phase
of the voting system, which is a crucial part of the election process.
We use the DEMOS state-of-the-art but centralized voting system as
the basis for our study. This system uses vote codes to represent vot-
ers’ choices, an Election Authority to setup the election and handle vote
collection and result production, and a Bulletin Board for storing the
election transcript for the long-term. We extract the vote collection mech-
anism from the centralized Election Authority component of the original
DEMOS system, and replace it with a distributed system that handles
vote collection in a Byzantine fault-tolerant manner. In this thesis, we
present the design, security analysis, prototype implementation and ex-
perimental evaluation of this vote collection component.
We present two versions of this component: one completely asynchronous
and one with minimal timing assumptions but better performance. Both
versions provide immediate assurance to the voter her vote was recorded
as cast, without requiring cryptographic operations on behalf of the
voter, while still preserving privacy. This way, a voter may cast her vote
using an untrusted computer or network, and still be assured her vote was
recorded as cast. For example, she may vote via a public web terminal,
or by sending an SMS from a mobile phone.

1 Dissertation Summary

1.1 Problem Description

E-voting systems are a powerful technology to improve the election process.
Kiosk-based e-voting systems allow the tally to be produced faster, but require
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the voter’s physical presence at the booth. Internet e-voting systems, however, al-
low voters to cast their votes remotely. Internet voting systems have the potential
to enhance the democratic process by reducing election costs and by increasing
voter participation for social groups that face considerable physical barriers and
overseas voters. In addition, several internet voting systems allow voters and
auditors to directly verify the integrity of the entire election process, providing
end-to-end verifiability. This is a highly desired property that has emerged in
the last decade, where voters can be assured that no entities, even the election
authorities, have manipulated the election result. Despite their potential, exist-
ing internet voting systems suffer from single points of failure, which may result
in the compromise of voter secrecy, service availability, or integrity of the result.

In this thesis, we consider increasing the fault-tolerance of voting systems by
introducing distributed components, while still preserving privacy and end-to-
end verifiability. We use the DEMOS [13] state-of-the-art but centralized voting
system as the basis for our study.

In its current form, the DEMOS voting system is centralized, having an
Election Authority (EA) component that handles everything from setup, to vote
collection, to result production. This presents a risk to availability, as a failure
of this component would prohibit voting. However, it also presents a risk to
voters’ privacy, as an attacker that takes control of this component can obtain
each voter’s ballot contents, which directly violates the voter’s privacy. Finally,
the original centralized DEMOS system had no need to provide feedback to the
voter, besides a simple acknowledgment. In a distributed world though, the voter
needs to obtain feedback to be assured the vote was actually recorded as cast in
enough nodes of the system, something we tackle in this thesis.

One specific attribute of DEMOS is its use of code-voting. In this scheme,
there is a setup component which generates vote codes representing the possible
voter’s choices, and includes them in the voters’ ballots. A voter votes by sub-
mitting the vote code corresponding to her choice. Because of this technique, the
voter does not need to perform cryptographic operations on the device she uses
to vote. Expanding on this, we set out to introduce a distributed voting system
that uses no client-side cryptography at all. This allows votes to be cast with
a greater variety of client devices over public networks, such as feature phones
using SMS, or (untrusted) public web terminals, while still preserving voter’s
privacy.

1.2 Related work

Several end-to-end verifiable e-voting systems have been introduced, e.g. the
kiosk-based systems [4, 12, 3, 2, 16] and the internet voting systems [1, 14, 17, 13].
In all these works, the Bulletin Board (BB) is a single point of failure and has
to be trusted.

Dini presents a distributed e-voting system, which however is not end-to-end
verifiable [11]. In [9], there is a distributed BB implementation, also handling
vote collection, according to the design of the vVote end-to-end verifiable e-voting
system [8], which in turn is an adaptation of the Prêt à Voter e-voting system [4].



In [9], the proper operation of the BB during ballot casting requires a trusted
device for signature verification. In contrast, our vote collection subsystem is
done so that correct execution of ballot casting can be “human verifiable”, i.e.,
by simply checking the validity of the obtained receipt. Additionally, our vote
collection subsystem in D-DEMOS/Async is fully asynchronous, always deciding
with exactly n− f inputs, while in [9], the system uses a synchronous approach
based on the FloodSet algorithm from [15] to agree on a single version of the
state.

1.3 Results

In this thesis, we present the design, security analysis, prototype implementa-
tion and experimental evaluation of the vote collection components of the D-
DEMOS [7] suite of distributed, end-to-end verifiable internet voting systems,
with no single point of failure during the election process (that is, besides setup).

We design a distributed Vote Collection (VC) subsystem that is Byzantine
fault-tolerant and able to collect votes from voters and assure them their vote
was recorded as cast, without requiring any cryptographic operation from the
client device. At election end time, VC nodes agree on a single set of votes.

We introduce two versions of the voting components of D-DEMOS that differ
in how they achieve agreement on the set of cast votes. The D-DEMOS/Async
version is completely asynchronous, while D-DEMOS/IC makes minimal syn-
chrony assumptions but is more efficient. Once agreement has been achieved,
VC nodes upload the set of cast votes to a second distributed component, the
Bulletin Board (BB). This, in turn, is a replicated service that publishes its data
immediately and makes it available to the public forever.

The resulting voting systems are end-to-end verifiable, by the voters them-
selves and third-party auditors, while preserving voter privacy. To delegate audit-
ing, a voter provides an auditor specific information from her ballot. The auditor,
in turn, reads from the distributed BB and verifies the complete election process,
including the correctness of the election setup by election authorities. Addition-
ally, as the number of auditors increases, the probability of election fraud going
undetected diminishes exponentially.

The thesis is structured as follows. Section 1 provides an introduction to the
problem, and gives a short description of DEMOS, the system we use as a model
and we extend to become fault-tolerant. Section 2 gives background information
on voting systems (using information from [5], and tools from distributed systems
and cryptography that we employ in our system designs.

Section 3 provides a thorough system description of the two systems we
build. It first gives the system model, and the gradually introduces the Vote
Collection subsystems we introduce, a mostly-asynchronous one with a single
timing assumption (for D-DEMOS/IC) and a completely asynchronous design
(for D-DEMOS/Async). It also describes how the systems are initialized by the
EA component, and how the voter uses our system to vote. This section also
includes the proofs of liveness and safety for both vote collection approaches.
In both approaches to vote collection, we design a voting protocol that is active



during voting hours and collects votes from the voters, and a vote set consensus
protocol that ensures agreement between vote collection nodes after voting is
finished, and allows the system to progress towards producing the election result.

Section 4 provides answers to questions regarding our system design. First
of all, it answers why standard approaches, like a Byzantine Fault Tolerant
Replicated State Machine (such as [6]), is not suitable for the problem at hand.
It then lists a series of possible attack vectors from different system components,
and describes how our system thwarts them.

Section 5 outlines our prototype implementation. It describes our message-
passing substrate and its interaction with our Web front-ends, and our imple-
mentation of the EA and both versions of the Vote Collection subsystems. It
also describes our implementation of Bracha’s asynchronous binary consensus,
that is used in the asynchronous version of the system.

Section 6 describes the evaluation and presents our experimental results. We
perform experiments with a relational database as a data store, and also with an
in-memory data storage approach. We perform experiments on a LAN, and we
also simulate a WAN. The outcome of the evaluation is that the D-DEMOS/IC
vote collection approach is slightly faster during voting (around 15%), and quite
faster during vote set consensus (4 times faster). for the disk-based experiments.

2 Vote collection for D-DEMOS

We will now briefly describe the design of our Vote Collection (VC) subsystem.
We design the VC subsystem as a distributed system of Nv cooperating

nodes, tolerating up to fv Byzantine faults, where fv < Nv/3. Note that, we
also tolerate the collusion of an arbitrary number of malicious voters with the
malicious VC nodes. VC nodes have private communication channels to each
other, and a public (unsecured) channel for the voters.

We modify the data generation process of DEMOS’s EA, by adding the
following two steps while generating voter’s ballots:

1. The (random) vote-code corresponding to each election option is provided
in committed form to each VC node.

2. A receipt is generated for each vote code, which is itself a random number.
The receipt is secret shared across VC nodes with a Verifiable Secret Sharing
(VSS) scheme. Each VC node receives one of these shares.

At step 1, the commitment scheme used hashes the plain text message along
with a salt. The salt is provided along with the committed form to each VC
node, while the opening of the commitment is the vote-code itself.

Before going into detail in the design of the Vote Collection subsystem, we
give an overview of its use. VC nodes are initialized from the EA (as above).
The voter receives her ballot also from the EA, along with the addresses of the
VC nodes. During the election hours, VC nodes run the voting protocol.

For this protocol to start, the voter selects one part of her ballot at random,
and posts her selected vote code to one of the VC nodes. The VC node that



receives her vote validates it, interacts with the other VC nodes to reconstruct
the receipt from the shares spread across the VC nodes, and posts it back to the
voter. When she receives a receipt, she compares it with the one on her ballot
corresponding to the selected vote code. If it matches, she is assured her vote
was correctly recorded and will be included in the election tally. The other part
of her ballot, the one not used for voting, will be used for auditing purposes.
This design is essential for verifiability, in the sense that the EA cannot predict
which part a voter may use, and the unused part will betray a malicious EA
with 1

2 probability per audited ballot.
At election end time, VC nodes run our Vote Set Consensus protocol, which

guarantees all VC nodes agree on a single set of voted vote codes. After agree-
ment, each VC node uploads this set to every BB node, which in turn publishes
this set once it receives the same copy from enough (fv + 1) VC nodes.

2.1 Synchronous version, for D-DEMOS/IC

The voting protocol starts when a voter submits a VOTE〈serial-no, vote-code〉
message to a VC node. We call this node the responder, as it is responsible for
delivering the receipt to the voter. The VC node confirms the current system
time is within the defined election hours, and locates the ballot with the speci-
fied serial-no. It also verifies this ballot has not been used for this election, either
with the same or a different vote code. Then, it compares the vote-code against
every hashed vote code in each ballot line, until it locates the correct entry.
Subsequently, it obtains from its local database the receipt-share corresponding
to the specific vote-code. Next, it marks the ballot as pending for the specific
vote-code. Finally, it multicasts a VOTE P〈serial-no, vote-code, receipt-share〉 mes-
sage to all VC nodes, disclosing its share of the receipt. In case the located ballot
is marked as voted for the specific vote-code, the VC node sends the stored receipt
to the voter without any further interaction with other VC nodes.

Each VC node that receives a VOTE P message, first validates the received
receipt-share according to the verifiable secret sharing scheme used. Then, it
performs the same validations as the responder, and multicasts another VOTE P

message (only once), disclosing its share of the receipt. When a node collects
hv = Nv − fv valid shares, it uses the verifiable secret sharing reconstruction
algorithm to reconstruct the receipt (the secret) and marks the ballot as voted
for the specific vote-code. Additionally, the responder node sends this receipt
back to the voter.

A message flow diagram of our voting protocol is depicted in Figure 1. As
is evident from the diagram, the time from the multicast of the first VOTE P

message until collecting all receipt shares, is only slightly longer than a single
round-trip between two VC nodes.

At election end time, each VC node stops processing VOTE and VOTE P mes-
sages, and initiates the vote-set consensus protocol. It creates a set V Si of
〈serial-no, vote-code〉 tuples, including all voted and pending ballots. Then, it
participates in the Interactive Consistency (IC) protocol of [10], with this set.
At the end of IC, each node contains a vector 〈V S1, . . . , V Sn〉 with the Vote



Fig. 1. Diagram of message exchanges for a single vote during the D-DEMOS/IC vote
collection phase.

Set of each node, and follows the algorithm of Figure 2. Step 1 makes sure

Cross-tabulate 〈V S1, . . . , V Sn〉 per ballot, creating a list of vote codes for each
ballot. Perform the following actions for each ballot:

1. If the list contains two or more distinct vote codes, mark the ballot as NotVoted
and exit.

2. If a vote code vca appears at least Nv − 2fv times in the list, mark the ballot
as Voted for vca and exit.

3. Otherwise, mark the ballot as NotVoted and exit.

Fig. 2. High level description of algorithm after IC.

any ballot with multiple submitted vote codes is discarded. Since vote codes are
private, and cannot be guessed by malicious vote collectors, the only way for
multiple vote codes to appear is if malicious voters are involved, against whom
our system is not obliged to respect our contract.

With a single vote code remaining, step 2 considers the threshold above which
to consider a ballot as voted for a specific vote code. We select the Nv − 2fv
threshold for which we are certain that even the following extreme scenario is
handled. If the responder is malicious, submits a receipt to an honest voter, but
denies it during vote-set consensus, the remaining Nv − 2fv honest VC nodes
that revealed their receipt shares for the generation of the receipt, are enough for
the system to accept the vote code (receipt generation requires Nv − fv nodes,
of which fv may be malicious, thus Nv − 2fv are necessarily honest).



Finally, step 3 makes sure vote codes that occur less than Nv−2fv times are
discarded. Under this threshold, there is no way a receipt was ever generated.

At the end of this algorithm, each node submits the resulting set of voted
〈serial-no, vote-code〉 tuples to each BB node, which concludes its operation for
the specific election.

2.2 Asynchronous version, for D-DEMOS/Async

We make the following enhancements to the Vote Collection subsystem, to
achieve the completely asynchronous version D-DEMOS/Async. During voting
we introduce another step, which guarantees only a single vote code can be
accepted (towards producing a receipt) for a given ballot. We also employ an
asynchronous binary consensus primitive to achieve Vote Set Consensus.

More specifically, during voting, the responder VC node validates the sub-
mitted vote code, but before disclosing its receipt share, it multicasts an
ENDORSE〈serial-no, vote-code〉 message to all VC nodes. Each VC node, after
making sure it has not endorsed another vote code for this ballot, responds
with an ENDORSEMENT〈serial-no, vote-code, sigVCi〉 message, where sigVCi is a digi-
tal signature of the specific serial-no and vote-code, with V Ci’s private key. The
responder collects Nv − fv valid signatures and forms a uniqueness certificate
UCERT for this ballot. It then discloses its receipt share via the VOTE P message,
but also includes the formed UCERT in the message.

Each VC node that receives a VOTE P message, first verifies the validity
of UCERT and discards the message on error. On success, it proceeds as per
the D-DEMOS/IC protocol (validating the receipt share it receives and then
disclosing its own receipt share).

The voting process is outlined in the diagram of Figure 3, where we now see
two round-trips are needed before the receipt is reconstructed and posted to the
voter.

The formation of a valid UCERT gives our algorithms the following guaran-
tees:

a) No matter how many responders and vote codes are active at the same time
for the same ballot, if a UCERT is formed for vote code vca, no other unique-
ness certificate for any vote code different than vca can be formed.

b) By verifying the UCERT before disclosing a VC node’s receipt share, we
guarantee the voter’s receipt cannot be reconstructed unless a valid UCERT
is present.

At election end time, each VC node stops processing ENDORSE, ENDORSEMENT,
VOTE and VOTE P messages, and follows the vote-set consensus algorithm in Fig-
ure 4, for each registered ballot.

Steps 1-2 ensure used vote codes are dispersed across nodes. Recall our receipt
generation requires Nv−fv shares to be revealed by distinct VC nodes, of which
at least Nv − 2fv are honest. Note that any two Nv − fv subsets of Nv contain
at least fv + 1 honest nodes (because fv > Nv/3), and at least one of the fv + 1



Fig. 3. Diagram of message exchanges for a single vote during the D-DEMOS/Async
vote collection phase.

1. Send ANNOUNCE〈serial-no, vote-code,UCERT〉 to all nodes. The vote-code will
be null if the node knows of no vote code for this ballot.

2. Wait for Nv− fv such messages. If any of these messages contains a valid vote
code vca, accompanied by a valid UCERT, change the local state immediately,
by setting vca as the vote code used for this ballot.

3. Participate in a Binary Consensus protocol, with the subject “Is there a valid
vote code for this ballot?”. Enter with an opinion of 1, if a valid vote code is
locally known, or a 0 otherwise.

4. If the result of Binary Consensus is 0, consider the ballot not voted.
5. Else, if the result of Binary Consensus is 1, consider the ballot voted. There

are two sub-cases here:
a) If vote code vca, accompanied by a valid UCERT is locally known, consider

the ballot voted for vca.
b) If, however, vca is not known, send a RECOVER-REQUEST〈serial-no〉

message to all VC nodes, wait for the first valid RECOVER-
RESPONSE〈serial-no, vca,UCERT〉 response, and update the local state ac-
cordingly.

Fig. 4. High level description of algorithm for asynchronous vote set consensus. This
algorithm runs for each registered ballot.

honest nodes has participated in receipt generation. Because of this, if a receipt
was generated, at least one honest node’s ANNOUNCE will be processed by every
honest node, and all honest VC nodes will obtain the corresponding vote code
in these two steps. Consequently, all honest nodes enter step 3 with an opinion
of 1 and binary consensus is guaranteed to deliver 1 as the resulting value, thus



safeguarding our contract against the voters. In any case, step 3 guarantees all
VC nodes arrive at the same conclusion, on whether this ballot is voted or not.

In the algorithm outlined above, the result from binary consensus is trans-
lated from 0/1 to a status of “not-voted” or a unique valid vote code, in steps 4-5.
Step 5b requires additional explanation. Assume, for example, that a voter sub-
mitted a valid vote code vca, but a receipt was not generated before election
end time. In this case, an honest vote collector node V Ci may not be aware of
vca at step 3, as steps 1-2 do not make any guarantees in this case. Thus, V Ci

may rightfully enter consensus with a value of 0. However, when honest nodes’
opinions are mixed, the consensus algorithm may produce either 0 or 1. In case
the result is 1, V Ci will not possess the correct vote code vca, and thus will not
be able to properly translate the result. Thus we introduce a recovery protocol
with which V Ci will issue a RECOVER-REQUEST multicast. We claim that another
honest node, V Ch, exists that possesses vca and replies with vca and the cor-
rect UCERT. The reason for the existence of an honest V Ch is straightforward
and stems from the properties of the binary consensus problem definition. If all
honest nodes enter binary consensus with the same opinion a, the result of any
consensus algorithm is guaranteed to be a. Since we have an honest node V Ci,
that entered consensus with a value of 0, but a result of 1 was produced, there
has to exist another honest node V Ch that entered consensus with an opinion of
1. Since V Ch is honest, it must possess vca, along with the corresponding UCERT
(as no other vote code vcb can be active at the same time for this ballot). Again,
because V Ch is honest, it will follow the protocol and reply with a well formed
RECOVER-REPLY. Additionally, the existence of UCERT guarantees that any
malicious replies can be safely identified and discarded by V Ci.

As per D-DEMOS/IC, at the end of this algorithm, each node submits the
resulting set of voted 〈serial-no, vote-code〉 tuples to each BB node, which con-
cludes its operation for the specific election.

2.3 Evaluation

We will now outline some notable results from our evaluation. In Figure 5, we
plot the average response time of both our vote collection protocols, versus the
number of vote collectors, under different concurrency levels, ranging from 500
to 2000 concurrent clients. The experiment is run with our in-memory data
structure, highlighting the performance of our network protocols. Results for
both systems illustrate an almost linear increase in the client-perceived latency,
for all concurrency scenarios, up to 13 VC nodes. D-DEMOS/IC has a slower
response time with its single round intra-VC node communication, while D-
DEMOS/Async is slightly slower due to the extra Uniqueness Certificate round.

Figure 6 shows the throughput of both our vote collection protocols, versus
the number of vote collectors, under different concurrency levels, for the same ex-
periment. We observe that, in terms of overall system throughput, the penalty of
tolerating extra failures (increasing the number of vote collectors) manifests early
on. We notice an almost 50% decline in system throughput from 4 to 7 VC nodes
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Fig. 5. Vote Collection response time of D-DEMOS/IC (5a) and D-DEMOS/Async
(5b), versus the number of VC nodes, under a LAN setting. Election parameters are
n = 200,000 and m = 4.
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Fig. 6. Vote Collection throughput of D-DEMOS/IC (6a) and D-DEMOS/Async (6b),
versus the number of VC nodes, under a LAN setting. Election parameters are n =
200,000 and m = 4.



for D-DEMOS/IC, and a bigger one for D-DEMOS/Async. However, further in-
creases in the number of vote collectors lead to a much smoother, linear decrease.
Overall, D-DEMOS/IC achieves better throughput than D-DEMOS/Async, due
to exchanging fewer messages and lacking signature operations.

3 Conclusion

In this thesis, we presented two different vote collection subsystems for the D-
DEMOS suite of distributed vote collection systems. Both resultant voting sys-
tems allow voters to verify their vote was tallied-as-intended without the assis-
tance of special software or trusted devices, while maintaining the end-to-end
verifiability required for external auditors to verify the correctness of the com-
plete election process. We proved the safety and liveness of both vote collection
subsystems, produced prototypes implementing them, measured their perfor-
mance, and demonstrated their ability to handle large-scale elections.

We believe our vote collection subsystems are applicable to any voting system
that uses the code-voting technique. Thus, we believe our work is a required step
towards producing higher quality voting systems that can handle large-scale
elections efficiently and reliably.
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